
ETC/LMI Serial Button Protocol Definition

Electronic Theatre Controls, Inc.

Last Revision November 9, 1990
for Software Release 1.84 '

Introduction

The ETC Serial Button Protocol provides a means by which a host device (e.g. a personal
computer) can send operational commands to an ETC Expression, Impression, Insight or
Concept 500 lighting control console. For example, the Serial Button Protocol makes it
possible to use a PC remotely to control a console that is configured with no face panel.

Communciation is bidirectional, via an RS-232 serial link a t 9600 bps, with 8 data bits, 1
stop bit. no parity. The host device uses a distinct serial port for each console slaved to
it.

Communication is packet-oriented, with each packet consisting of a list of up to 32
opcodes followed by a termination code. Certain opcodes require one or more
arguments - such arguments follow immediately after the opcode.

In what follows, word refers to a 2-byte integer value. Word values are transmitted
least significant byte first.

Escape Seauences

Each packet is terminated with a byte value of 255 (decimal). To distinguish between a
terminator and other occurrences of 255 in the packet data, escape sequences are
employed in the standard manner.

That is, an escape character (byte) is defined; it is 27 (decimal). Each non-terminator
instance of 255 in a packet is preceded by an escape character. Likewise, each non-
escape byte value of 27 in a packet is preceded by an escape character.

Escape characters are inserted into the packet as needed by the sending device when a
packet is transmitted and are stripped out by the receiving device when the packet is
received.

Escape characters are used only for host-to-console communications. They are not used
in the console-to-host Status Message (see below).

Host-to-Console Operational Opodes

Up to 32 opcodes may be sent in a packet. The only exception is opcode 1000, which
must be sent one-per-packet. The opcodes are word values, as are their arguments, if
any.

Many of the opcodes correspond simply to buttons on the fade panel of the lighting
control console. For that reason, they will be referred to as 'button' in this document.

SPB
Page 1
1 1/1 0/90

The following opcodes have no arguments:

Opcode Definition

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
18
20
21
22
23
24
25
26
27
28
29
30
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

SPB
Page 2
1 /10/90

Up Arrow
Left Arrow
SETUP
AUTOLOAD
PATCH
STYLE
TRACKSH EET
CUE SELECT
FADER
STEP
EXPAND
Right Arrow
BLACK OUT
Down Arrow
INHIB SUB
HOLD A/B
HOLD C/D
REC
GO A/B
LINK
TRACK
GO C/D
M1
M2
M3
M4
M5
REL
EXCEPT
so LO
TIME
DIM
TYPE
PAGE
SUB
CUE
7
BLIND
8
STAG E
4
CHAN
5
GRP
1
AT
2
FULL
0
CLEAR

ENTER
-
+

59
60
61
62
63
64

89
90
91
93
94
95
100
104
109

1003

AND

THRU
33
9
6

M*
MACRO WAIT
ENTER MACRO
CLEAR A / B
CLEAR C/D
BACK
FLASH
HELP
Clear the System

Update digitzer region definitions (See opcode 1002, below). After
sending new digitizer cell definitions via a sequence of opcode 1002
packets, send an opcode 1003 to cause the console to 'digest' the new
cell definitions. Cells that have nto been modified, i.e. cells for which no
opcode 1002 packet was sent, retain their current definitions.

The following opcodes have 1 argument:

Opcode Definition

106 Submaster bump
107 Clear-sub (a conditional submaster bump: if the submaster is currently

fading up or waiting to begin its downfade, fade it out. Otherwise, do
nothing. i.e., net effect is to fade the submaster out).
On-sub (a conditional submaster bump: if the submaster is not already
fading up or waiting to begin its downfade, fade it up. Otherwise, do
nothing. i.e., net effect is to fade the submaster up.)

157 Grandmaster pot level (for console with no face panel)
161-164 A,B,C,D fader pot levels, respectively (for console with no face panel)
170 Fader wheel

108

Recall that arguments are word values.

For opcodes 106-108, the argument is a submaster number, 1-108.

For opcodes 157 and 161-164 the argument is a value in the range 0-255 specifying
the pot level.

For opcode 170, the argument is a value in the range 0 to 200, specifying a biased
number of 'ticks.' A tick is the smallest wheel movement detectable, analogous to
a 'mickey' in mouse nomenclature. The values are biased by adding 100 to the
number of ticks, so that 0 corresponds to -100 ticks, 100 corresponds to 0 ticks, and
200 corresponds to 100 ticks. This biasing is done to avoid negative values, since -17
and -19 are treated specially by the console (see the section 'XON/OFF Pacing',
below).

SPB
Page 3
1 1/10/90

The following opcodes have 2 arguments:

Opcode Definition

92 Alphanumeric keystroke (for consoles with alphanumeric keyboard option)
Arguments: (ASCII code, scan code)

Submaster pot level (for console with no face panel)
Arguments: (submaster number, pot level)
Pot level is in the range of 0-255.

1004

The following opcode has 3 arguments:

Opcode Definition

1002 Assign a region to a cell of digitizer region space (See opcode 1003,
above).
Arguments: (Region number, X coord, Y coord)
Coordinate system: 0.1 inch grid,

lower left cell = (0,0)

i.e. to program digitizer regions, send a sequence of packets using opcode
1002 to define the region assignment for each 0.1 inch cell to be redefined
in the user-programmable portion of the digitizer, then send opcode 1003
to tell the console to do the internal processing required to set up the
new regions in memory. Cells that are not modified, i.e. cells for which no
opcode 1002 is sent, retain their current region assignment. To clear a cell,
assign it to region 0.

The macro associated with a given region can then be programmed by
sending t h e button hits you would use to program the macro from the
console face panel.

Terminator

As noted above, each packet is terminated by a byte value equal to 255 decimal.

Sample Packet

The following stream of bytes (decimal) sent host-to-console starts CUE 25 on the A//B
fader, triggers Macro 2, moves the fader wheel -1 tick, and sets the Grandmaster to
50%:

7966 ?
41 0 52 0 48 0 22 0 27 27 0 170 0 27 255 27 255 157 0 127 0 255

Note particularly the use of escape sequences.

SPB
Page 4
1 1/1O/90

Host-to-Console Status Request Opcode

The following opcode allows the host to request status information from the console.

Opcode Definition

1000 Status Request (no arguments)

The console replies with a Status Message (see below). One special limitation
applies to opcode 1000:

A packet containing opcode 1000 is not permitted to contain any other opcodes.

Console-to-Host Oucode

Opcode Definition

1001 Status Message (1 argument)

The status message is sent in response to
whenever the console error status changes.

Argument: 16 l-bit condition flags: flag = 1
has occurred.

Bit 0 - battery memory error
Bit 1 - disk error
Bit 2 - printer error
Bit 3 - communications buffer overflow

opcode 1000. I t is also sent

means the specified condition

Bit 4 - host must wait for XON before resuming transmission
Bit 5 - a macro is active
Bit 6 - console configured with no face panel (sent only when console

boots up)
Bit 7 - fae panel communications timeout

Bits 8 - 15 - reserved for future use

The Status Message is guaranteed never to have XON or XOFF bytes (see
below) interleaved within it. As a precaution, therefore, each Status
Message is routinely preceded by an XOFF and followed by XON.

Likewise, Escape sequences are not employed within the Status
Message.

Sending Macro Commands from the Host

Macros on ETC consoles have the following property: starting a macro while another
macro is running terminates the macro that was running.

If the host wants to start a macro, but does not want to risk terminating an active
macro, it should first send a Status Request packet to see if a macro is active (see the
Status Message definition, above.) If the Status Message reply packet from the
console indicates a macro is active, the host should re-send the Status Request and
should continue to do so until the Status Message reply indicates no macro is active.

SPB
Page 5
1 1 /1 0/90

Note that is is possible to define a macro that runs forever - e.g. a macro that executes
itself. It is the responsibility of the user to ensure that a deadlock condition does not
arise, for example by stipulating that no 'infinite loop' macros will be used in the console
when a host will be sending macro commands, or by building a timeout into the host
when it is waiting for the console to finish its currently executing macro.

Note also the distinction between a macro that 'runs forever' and a macro that initiates
some other action that 'runs forever'. In particular, suppose a macro is defined that
does nothing but initiate a submaster bump with an infinite wait time. The macro is
active only so long as it takes to initiate the bump. This is not an example of a macro
that 'runs forever' - no deadlock consideration apply.

Miscellaneous Comments

Opcodes not defined above are reserved for future expansion.

The console face panel ordinarily remains 'live' while the protocol is in use. If buttons
transmitted from the host device and buttons sent from the console's face panel are
interleaved, the operational results will be unpredictable. This problem is alleviated
partially by the following stipulation: console software gives a higher priority to buttons
transmitted from a host device. This means that a sequence of buttons sent in a single
packet will necessarily be serviced sequentially.

Note, however, that there is nothing to prevent a sequence of buttons entered a t the
face panel from being interrupted by buttons sent from the host device. It is the
responsibility of the user to ensure that this does not interfere with the operation of
the console. This may be done by carefully partitioning operational tasks between the
face panel and the host device, or by restricting use of the face panel to operational
phases during which the host device is known to be inactive.

The serial button protocol can be used to set pot levels only on consoles that are
configured without a face panel. If the console has a face panel, pot levels transmitted
from the host device will be ignored. Fader wheel movements, however, will be
processed by the console in any case.

XON/OFF Pacing

The console uses XON/XOFF codes to pace transmissions from the host. The host does
not pace the console. XON's and XOFF's from the host are harmless; they are ignored
by the console. I

If the console's input buffer becomes nearly full, the console sends an XOFF byte to
the host. The XOFF byte value is 19 decimal. It is sent as a single bute, not as a packet
with opcode and terminator. The console sends an additional XOFF for each byte
received until the host stops transmitting.

When the console has emptied most of its buffer, it sends an XON byte to the host.
The XON byte value is 17 decimal. Like the XOFF, the XON is sent as a single byte, not
as a packet with opcode and terminator.

The host stops transmitting when it receives an XOFF. It resumes transmitting when it
receives an XON. If no XON is sent within a reasonable time period, the host should
send a Status Request message. Then if the host does not receive a Status Message
in reply within a few seconds, it may assume communications with the console have
been disrupted. That is, the console guarantees that replies to Status Requests will be
sent promptly even if the console is in the midst of doing something else.

SPB
Page 6
1 1 /10/90

Note that a Status Request message (the only console-to-host message) is guaranteed
never to have XON/XOFF bytes embedded within it. As a precaution, each Status
Message is routinely preceded by an XOFF and followed by XON.

A minimal implementation of host software may ignore 'XON/XOFF pacing provided the
host adheres to the following three requirements:

First, the host must not send packets so quickly that the console cannot keep
up. (To get a sense of how fast is too fast, see the DEMO program, described
below.)

-

- Second, the host must not send packets while the console is busy doing a disk
operation. In particular, this means that a command that initiates a disk
operation must be the last (or only) command in its packet.

Third, the host must delay at least a tenth of a second after sending a command
that causes the console to switch screen modes. Such commands include:
STAGE, BLIND, FADER, TRACKSHEET, PATCH, SETUP, and EXPAND. In
particular, it follows that any such command must be the last (or only) command
in its packet.

-

Since XON (17 decimal) and XOFF (19 decimal) have special meanings in the protocol, it
is necessary to distinguish them from values of 17 or 19 that may occur as arguments
(e.g. to specify submaster 17 or 19). Argument values of 17 or 19 are treated as a
special case:

IMPORTANT All argument values of 17 and 19 must be sent to the console a s -17
and -19, respectively. The console always converts -17 to 17 and -19 t o 19.

Since arguments are word values, sent least significant byte first, and since non-
terminator occurrences of 255 are escaped:

-17 is sent as: 239 27 255 (decimal)

-19 is sent as: 237 27 255 (decimal)
and

Latency

A packet is not serviced until its terminator byte has been received. This introduces a
slight delay (roughly N millisec., where N is the number of bytes in the packet) before
the first opcode in the packet can be serviced by the console in the best case.

Worst cases are possible. The-console may already be servicing another button which
must complete before the packet's opcodes can be serviced. Most buttons take only
about .05 secs. to complete, but some - disk and printer operations being the worst
cases - take longer.

Since buttons received from the host are given priority, at most one button must be
serviced before the next button from the host is attended to. This means that host
transmitted buttons will ordinarily receive prompt service. If large numbers of buttons
are sent by the host in rapid succession, however, buttons sent later will have to wait
their turn. This means that the host may want to prioritize among the various operations
in transmits.

SPB
Page 7
1 1/1 0/90

Settina Up the Console

To use the Serial Button Protocol with your Expression, Impression, Insight or Concept
500 lighting control console, the console must have sofrware release 1.60 or later. The
details of the protocol are described in this document revision apply specifically to the
software release noted on the title page.

Connect the Serial Button Protocol cable between a serial port on your host device and
the serial printer port on the back of your console.

In the System Settings menu on your lighting console, select the "Serial/Parallel Printer'
entry and set your console for a parallel printer. This allows the Serial Button Protocol to
use the serial port.

Having selected the parallel printer, turn your console's power off and back on to reboot
it. When the console completes the boot sequence it is ready to receive Serial Button
Protocol commands.

BELDON 9503 CABLE

b-- 6 FEET

DB- 9 FEMALE

W / STRAIN RELIEF

PINOUT:

D a t a I n

3 x: D a t a O u t

5- 5 Gnd

1,486 nc 1,486 Console +12v

7 8 8 nc 788 RTS&CTS

DB- 9 FEMALE

W / STRAIN RELIEF

INS TALL A T ION:

- Cable is c o n n e c t e d t o "Ser ia l P r i n t e r " c o n n e c t o r on

console.

- C o n n e c t o r s a r e w i red f o r PC A T s t y l e s e r i a l p o r t s ,

SERIAL BUTTON PROTOCOL

INTERCONNECT CABLE

ELECTRONIC THEATRE CONTROLS 10-10-88

EXPN-481

PAGE 1 OF 1

